
Chapter 3 - Problem Solving & Program Planning

Need for problem solving and planning a program

Problem – a state of desire for reaching a definite goal from a present condition

Solution – the management of a problem in a way that successfully meets the goals set for treating it.

THE FIVE STEPS OF PROBLEM SOLVING

With that understanding of problem solving, let’s talk about the steps that can get you there. The five
problem solving steps are shown in the chart below:

1. Define the Problem
 Input: something is wrong or something could be

improved.
 Output: a clear definition of the opportunity and a goal

for fixing it.
2. Brainstorm Ideas
 Input: a goal; research of the problem and possible

solutions; imagination.
 Output: pick-list of possible solutions that would

achieve the stated goal.
3. Decide on a Solution
 Input: pick-list of possible solutions; decision-making

criteria.
 Output: decision of what solution you will implement.

4. Implement the Solution
 Input: decision; planning; hard work.
 Output: resolution to the problem.

5. Review the Results
 Input: resolutions; results of the implementation.
 Output: insights; case-studies; bullets on your resume.

Program design tools: Algorithms, Flowcharts and Pseudocode

Algorithms

Algorithm is a step-by-step procedure, which defines a set of instructions to be executed in a certain
order to get the desired output. Algorithms are generally created independent of underlying languages,
i.e. an algorithm can be implemented in more than one programming language.

From the data structure point of view, following are some important categories of algorithms −
 Search − Algorithm to search an item in a data structure.
 Sort − Algorithm to sort items in a certain order.
 Insert − Algorithm to insert item in a data structure.
 Update − Algorithm to update an exis ng item in a data structure.
 Delete − Algorithm to delete an exis ng item from a data structure.

Chapter 3 - Problem Solving & Program Planning

Need for problem solving and planning a program

Problem – a state of desire for reaching a definite goal from a present condition

Solution – the management of a problem in a way that successfully meets the goals set for treating it.

THE FIVE STEPS OF PROBLEM SOLVING

With that understanding of problem solving, let’s talk about the steps that can get you there. The five
problem solving steps are shown in the chart below:

1. Define the Problem
 Input: something is wrong or something could be

improved.
 Output: a clear definition of the opportunity and a goal

for fixing it.
2. Brainstorm Ideas
 Input: a goal; research of the problem and possible

solutions; imagination.
 Output: pick-list of possible solutions that would

achieve the stated goal.
3. Decide on a Solution
 Input: pick-list of possible solutions; decision-making

criteria.
 Output: decision of what solution you will implement.

4. Implement the Solution
 Input: decision; planning; hard work.
 Output: resolution to the problem.

5. Review the Results
 Input: resolutions; results of the implementation.
 Output: insights; case-studies; bullets on your resume.

Program design tools: Algorithms, Flowcharts and Pseudocode

Algorithms

Algorithm is a step-by-step procedure, which defines a set of instructions to be executed in a certain
order to get the desired output. Algorithms are generally created independent of underlying languages,
i.e. an algorithm can be implemented in more than one programming language.

From the data structure point of view, following are some important categories of algorithms −
 Search − Algorithm to search an item in a data structure.
 Sort − Algorithm to sort items in a certain order.
 Insert − Algorithm to insert item in a data structure.
 Update − Algorithm to update an exis ng item in a data structure.
 Delete − Algorithm to delete an exis ng item from a data structure.

Chapter 3 - Problem Solving & Program Planning

Need for problem solving and planning a program

Problem – a state of desire for reaching a definite goal from a present condition

Solution – the management of a problem in a way that successfully meets the goals set for treating it.

THE FIVE STEPS OF PROBLEM SOLVING

With that understanding of problem solving, let’s talk about the steps that can get you there. The five
problem solving steps are shown in the chart below:

1. Define the Problem
 Input: something is wrong or something could be

improved.
 Output: a clear definition of the opportunity and a goal

for fixing it.
2. Brainstorm Ideas
 Input: a goal; research of the problem and possible

solutions; imagination.
 Output: pick-list of possible solutions that would

achieve the stated goal.
3. Decide on a Solution
 Input: pick-list of possible solutions; decision-making

criteria.
 Output: decision of what solution you will implement.

4. Implement the Solution
 Input: decision; planning; hard work.
 Output: resolution to the problem.

5. Review the Results
 Input: resolutions; results of the implementation.
 Output: insights; case-studies; bullets on your resume.

Program design tools: Algorithms, Flowcharts and Pseudocode

Algorithms

Algorithm is a step-by-step procedure, which defines a set of instructions to be executed in a certain
order to get the desired output. Algorithms are generally created independent of underlying languages,
i.e. an algorithm can be implemented in more than one programming language.

From the data structure point of view, following are some important categories of algorithms −
 Search − Algorithm to search an item in a data structure.
 Sort − Algorithm to sort items in a certain order.
 Insert − Algorithm to insert item in a data structure.
 Update − Algorithm to update an exis ng item in a data structure.
 Delete − Algorithm to delete an exis ng item from a data structure.



Characteristics of an Algorithm

Not all procedures can be called an algorithm. An algorithm should have the following characteristics −
 Unambiguous − Algorithm should be clear and unambiguous. Each of its steps (or phases), and

their inputs/outputs should be clear and must lead to only one meaning.
 Input − An algorithm should have 0 or more well-defined inputs.
 Output − An algorithm should have 1 or more well-defined outputs, and should match the desired

output.
 Finiteness − Algorithms must terminate a er a finite number of steps.
 Feasibility − Should be feasible with the available resources.
 Independent − An algorithm should have step-by-step directions, which should be independent of

any programming code.

Algorithm to find if a number is even or odd:

Step 1: Start
Step 2: Input n (where n is integer)
Step 3: if(n%2==0) (where % gives us remainder)

Print "Even Number"
else

Print "Odd Number"
Step 4: Stop

Algorithm to find if a number is prime or not:

Step 1: Start
Step 2: Declare variables n,i,flag.
Step 3: Initialize variables

flag←1
i←2

Step 4: Read n from user.
Step 5: Repeat the steps until i < (n/2)

5.1 If remainder of n divide by i equals 0
flag←0
Go to step 6

5.2 i←i+1
Step 6: If flag=0

Display n is not prime
else

Display n is prime
Step 7: Stop

Flowcharts

A flow chart is a graphical or symbolic representation of a process. Each step in the process is represented
by a different symbol and contains a short description of the process step. The flow chart symbols are
linked together with arrows showing the process flow direction.



Flowcharts use simple geometric symbols and arrows to define relationships. In programming, for
instance, the beginning or end of a program is represented by an oval. A process is represented by a
rectangle, a decision is represented by a diamond and an I/O process is represented by a parallelogram.
The Internet is represented by a cloud.

Symbols used in flowcharts are as follows:

Flowchart to find if a number is prime or not:

Flowcharts use simple geometric symbols and arrows to define relationships. In programming, for
instance, the beginning or end of a program is represented by an oval. A process is represented by a
rectangle, a decision is represented by a diamond and an I/O process is represented by a parallelogram.
The Internet is represented by a cloud.

Symbols used in flowcharts are as follows:

Flowchart to find if a number is prime or not:

Flowcharts use simple geometric symbols and arrows to define relationships. In programming, for
instance, the beginning or end of a program is represented by an oval. A process is represented by a
rectangle, a decision is represented by a diamond and an I/O process is represented by a parallelogram.
The Internet is represented by a cloud.

Symbols used in flowcharts are as follows:

Flowchart to find if a number is prime or not:



Flowchart to find the largest out of three numbers:

Pseudocode

Pseudocode is an informal high-level description of the operating principle of a computer program or
other algorithm.

It uses the structural conventions of a normal programming language, but is intended for human reading
rather than machine reading. Pseudocode typically omits details that are essential for machine
understanding of the algorithm, such as variable declarations, system-specific code and some
subroutines. The programming language is augmented with natural language description details, where
convenient, or with compact mathematical notation. The purpose of using pseudocode is that it is easier
for people to understand than conventional programming language code, and that it is an efficient and
environment-independent description of the key principles of an algorithm. It is commonly used in
textbooks and scientific publications that are documenting various algorithms, and also in planning of
computer program development, for sketching out the structure of the program before the actual coding
takes place.

Example: Write a pseudocode for printing Fibonacci series:

 Declare an integer variable called n
 Declare an integer variable sum
 Declare an integer variable f1
 Declare an integer variable f2
 set sum to 0
 set f1 and f2 to 1
 set n to 50
 repeat n times
 sum = f1 + f2
 f2 = f1
 f1 = sum
 print sum

 end loop

Flowchart to find the largest out of three numbers:

Pseudocode

Pseudocode is an informal high-level description of the operating principle of a computer program or
other algorithm.

It uses the structural conventions of a normal programming language, but is intended for human reading
rather than machine reading. Pseudocode typically omits details that are essential for machine
understanding of the algorithm, such as variable declarations, system-specific code and some
subroutines. The programming language is augmented with natural language description details, where
convenient, or with compact mathematical notation. The purpose of using pseudocode is that it is easier
for people to understand than conventional programming language code, and that it is an efficient and
environment-independent description of the key principles of an algorithm. It is commonly used in
textbooks and scientific publications that are documenting various algorithms, and also in planning of
computer program development, for sketching out the structure of the program before the actual coding
takes place.

Example: Write a pseudocode for printing Fibonacci series:

 Declare an integer variable called n
 Declare an integer variable sum
 Declare an integer variable f1
 Declare an integer variable f2
 set sum to 0
 set f1 and f2 to 1
 set n to 50
 repeat n times
 sum = f1 + f2
 f2 = f1
 f1 = sum
 print sum

 end loop

Flowchart to find the largest out of three numbers:

Pseudocode

Pseudocode is an informal high-level description of the operating principle of a computer program or
other algorithm.

It uses the structural conventions of a normal programming language, but is intended for human reading
rather than machine reading. Pseudocode typically omits details that are essential for machine
understanding of the algorithm, such as variable declarations, system-specific code and some
subroutines. The programming language is augmented with natural language description details, where
convenient, or with compact mathematical notation. The purpose of using pseudocode is that it is easier
for people to understand than conventional programming language code, and that it is an efficient and
environment-independent description of the key principles of an algorithm. It is commonly used in
textbooks and scientific publications that are documenting various algorithms, and also in planning of
computer program development, for sketching out the structure of the program before the actual coding
takes place.

Example: Write a pseudocode for printing Fibonacci series:

 Declare an integer variable called n
 Declare an integer variable sum
 Declare an integer variable f1
 Declare an integer variable f2
 set sum to 0
 set f1 and f2 to 1
 set n to 50
 repeat n times
 sum = f1 + f2
 f2 = f1
 f1 = sum
 print sum

 end loop


